Amateur Radio Satellites

Ogden Amateur Radio Club

January 16, 2016

Satellites for Beginners

- Overview of Satellites
- Types of Orbits
- Orbital Mechanics
- Keplerian Elements
- Satellite Tracking
- Antenna Basics
- Simple Transmitters/Receivers
- Satellites for Beginners

What Is An OSCAR

- An OSCAR is an Orbiting Satellite
 Carrying Amateur Radio
- Built for non-commercial purposes
- Originally built by Project OSCAR members in garages in Silicon Valley
- Now built by and/or funded by members of AMSAT and AMSAT affiliates
- Originally a "bleep sat" but now carry sophisticated repeaters or transponders
- Are encouraged to carry sensors and other scientific experiments

Chuck Towns K6LFH in his garage with OSCAR-II

Some Important Terms

Orbit

 □ The path a satellite travels around the earth

Doppler ⇒ A **shift** in frequency caused by satellite motion

LEO ⇒ A satellite in Low Earth Orbit (400-2000km)

HEO ⇒ A satellite in a **H**igh **E**arth **O**rbit (> 20,000km)

GEO ⇒ A satellite in a **Geo**synchronous orbit (35,680km)

Uplink ⇒ The frequency used to **transmit** to a satellite

Downlink ⇒ The frequency used to **receive** a satellite

A circular area where the satellite is line of sight

When the satellite is at it's highest alititude

When the satellite is at it's lowest altitude

The **angle** of the satellite where equator = zero

Apogee

Perigee

Footprint ⇒

Types of Orbits

FIGURE 71: SATELLITE ORBITAL DISTANCES

Satellite Orbit Tracks

- Artificial satellites travel in an arc determined by height, eccentricity, and inclination.
- Inclination can range from 0° (equitorial) to 90° (polar)
- The time the satellite is visible (in range) to an observer is called a satellite "pass". During the pass, you are in the "footprint"
- The altitude of the satellite above the earth determines the length of the orbit and pass or "time on station" and mutual coverage

FM Repeater vs Linear Transponder

Single Channel NFM Repeater

100 KHz Wide Linear Transponder

581.800 - 145.940 = 435.860 USB/CW Downlink

Operating a Satellite

Satellites don't have the physical space to separate receive and transmit antennae a great distance, so they use different bands

Traditional LEO Modes:

Mode A = 10m/2m

Mode B = 2m/70cm

Mode J = 70 cm/2m

New satellite band designations are paired letters, eg U/V, L/S, etc.

₹ Transponder/	Repeater a	ctive Telemetry/I	Beacon only N	signal Conflic	ting reports SS C	rew (Voice) Active
Name	Jan 14	Jan 13	Jan 12	Jan 11	Jan 10	Jan 9
		1 1 1	<u>1</u> 1	1	1	1 1
CUTE-1	<u>1111</u>	<u>11111</u>	<u>11</u> <u>11</u>	<u>11</u> <u>12</u>	<u>11</u> <u>1</u> <u>1</u> <u>1</u>	<u>1111</u>
UKube-1	<u>1</u>			<u>1</u> 1		
LilacSat-2	413 <u>1</u>	<u>3</u> <u>2</u> <u>111</u>	2 2 <u>1</u> 12	<u>34</u> <u>14</u>	<u>12</u> <u>12</u>	23 34133 <u>2</u>
[A]_AO-7						
[B]_AO-7	234331	<u> 112214323211</u>	11332 224	1 224 4423	1 31 324 912	21121214432221
XI-V	<u>11</u>	<u>11</u>	<u>11</u>	<u>11</u>		<u>111</u> 1
RS-15			<u>2</u>			
FO-20						
RS-25			1			
10-26					<u>1</u> _	
AO-27						
FO-29	32631	1 22444513	122123321	<u> 1634441</u>	22 22 326112	3 111333554 41
XW-2A	121 1	2 123 1	11 252 1	3 2231 1	3 <u>1</u> 31 1 2 1	1 121 31 1 2
XW-2B	<u>3</u>	<u>1</u>	<u>1</u>	<u>1</u> <u>1</u>	<u>1</u>	<u>3</u>
XW-2C	<u>3</u>	<u>1</u>	<u>1</u> <u>1</u>	<u> 1</u> <u>1</u>	<u>11</u>	<u>2</u>
XW-2D	<u>3</u>	<u>1</u>	<u>1</u>	<u>1</u> <u>1</u>	<u>1</u>	<u>1</u>
XW-2E						
XW-2F	51 1	22 17 11	1 1322 1	1_ 431 1	4 1164 3	11111153 1 1 1
NO-44				1	1	1
SO-50	31241	2 <u>1233331</u> 2	11 253241 I	12 244111	1 165432 24	12 1211532 112
AO-51						
HO-68						
AO-73	1 22 2	2 43 211 1	32 4 <u> 3</u>	2 213 <u>11</u>	12 13121 2 3 1	122 173 152212
EO-79	<u>1</u>	<u>1</u>		<u>l</u> <u>1</u>		1111
AO-85	3 2	<u>168443 11 1</u>	224461	322141 1	4/ 2151 1 2 2	2256 1 1531432
10-86						
AO-99						
Delfi-C3	1111	<u>1</u> 1 11	<u>12</u>	1111	<u>1 1</u>	<u>1</u> <u>12</u>
ISS-FM						
XI-IV	1111	<u>11111</u>	<u>11 11</u>	11 12	1 1 1 1	<u>1111</u>
DUCHIFAT1				<u>1</u>	1	
ISS-DATA	2_ 161	1 114	1 1 214	2 1 19	1 1 2 613	81 2
ISS-SSTV						

AMSAT Online Satellite Pass Predictions - AO-85

View the current location of AO-85

Date (UTC)	AOS (UTC)	Duration	AOS Azimuth	Maximum Elevation	Max El Azimuth	LOS Azimuth	LOS (UTC)
15 Jan 16	00:01:17	00:14:35	183	32	102	42	00:15:52
15 Jan 16	01:41:22	00:15:16	233	40	313	28	01:56:38
15 Jan 16	03:24:57	00:11:59	282	10	320	22	03:36:56
15 Jan 16	05:10:11	00:08:10	325	4	350	29	05:18:21
15 Jan 16	06:52:29	00:10:46	338	8	17	68	07:03:15
15 Jan 16	08:32:54	00:14:17	334	30	52	118	08:47:11
15 Jan 16	10:13:32	00:14:16	321	41	245	169	10:27:48
15 Jan 16	11:57:12	00:05:31	285	2	273	240	12:02:43
15 Jan 16	22:49:19	00:10:52	148	9	109	57	23:00:11
16 Jan 16	00:26:37	00:15:30	205	71	97	35	00:42:07
16 Jan 16	02:08:15	00:14:12	253	21	308	24	02:22:27
16 Jan 16	03:52:57	00:10:07	302	6	341	22	04:03:04
16 Jan 16	05:37:23	00:08:38	334	4	359	42	05:46:01
16 Jan 16	07:18:31	00:12:37	337	13	33	89	07:31:08
16 Jan 16	08:58:52	00:14:48	329	59	33	139	09:13:40
16 Jan 16	10:40:05	00:12:29	312	17	257	193	10:52:34
16 Jan 16	23:13:15	00:13:59	174	23	119	45	23:27:14
17 Jan 16	00:52:40	00:15:31	225	53	300	30	01:08:11
17 Jan 16	02:35:43	00:12:43	274	13	330	22	02:48:26
17 Jan 16	04:21:00	00:08:36	319	4	344	27	04:29:36
17 Jan 16	06:03:54	00:10:03	338	6	17	60	06:13:57
17 Jan 16	07:44:27	00:13:47	335	23	53	109	07:58:14
17 Jan 16	09:24:56	00:14:35	324	58	259	160	09:39:31
17 Jan 16	11:07:28	00:08:35	296	5	272	222	11:16:03
17 Jan 16	22:02:07	00:08:48	136	5	111	65	22:10:55

Satellite Tracking Programs

PC

- Nova For Windows
- SatPC32 for Windows
- SCRAP

Available at the AMSAT web site!

- Satscape
- Orbitron

MacIntosh

MacDoppler Pro
 Contact Dog Park Software

PDA

- PetiTrack for Zaurus
- PocketSat for Palm and PalmPC

Nova for Windows

Keplerian Elements

A0-7

1 07530U 74089B 04140.70617484 -.00000029 00000-0 10000-3 0 2774 2 07530 101.6834 187.8825 0012044 277.9198 82.0507 12.53568957350341

- Keplerian Elements are a mathematical model of a satellites orbit
- Used by tracking programs to predict where the satellite is at a given time
- Need to be updated periodically (esp ISS it can be maneuvered)
- Most tracking programs do this over the internet
- Two formats
 - NORAD Two Line Elements (TLE most common)
 - AMSAT Verbose Format

Doppler for Beginners - Receiving

Satellite transmits at 436.795

The overriding rule of thumb is to tune so you can hear other stations clearly.

Simple Transmitters/Receivers

- VERY BASIC LIST:
- VHF/UHF FM transceiver/hand held transceiver.
- VHF/UHF ¼ wave antenna.
- 2.5 W for the hand held.

- INTERMEDIATE LIST
- VHF/UHF Multimode.
- VHF/UHF beam antennas.
- Azimuth & Elevation control rotator.
- Higher power for the elliptical orbit satellites.

Minimum Requirements

- All mode 2m/70cm radio or Dual VFO HT
- Dual Band Arrow Antenna or high gain whip antenna
- Palm computer with tracking software
- Patience

WØEEC QSOs with WH6BIE via UO-14 from California to Hawaii – 4000km

Antenna Basics

Antenna's for Beginners

HORIZONTAL HALFWAVE DIPOLE AVERAGE IMPEDANCE 70 OHMS

(8)

INVERTED V ~120° APEX ANGLE AVERAGE IMPEDANCE 50 OHMS

V DIPOLE ~120° APEX ANGLE AVERAGE IMPEDANCE 50 OHMS

FREQUENCY	ℓ_1	l ₂
29.5 MHz	15′ 11″	15′ 7″
146 MHz	38.0"	37.0"
435 MHz	12¾"	121/2"

NOTE: 1. Lengths are approximate and based on #12 wire.
2. Actual input impedance depends on height and other factors.

Ideal Ground Station for LEOs

- Cross beam or circularly polarized Yagi or helical
- Computer tracking system
- Computer controlled AZ-EL rotators
- Full-duplex dual band radio computer controlled tuning
- TNC and Soundcard Interface for TLM and Packet
- APRS Software
- Mast mounted receiver preamps
 (Rule of thumb it's better to have big ears than a big mouth.)

Photo courtesy of K6IA

ACTIVE SATELLITES - AS OF 1/16/2016

		T					
SATEL.	BEACON/TEL. FREQUENCY	MODE	UPLINK	DOWNLINK	MODE	REMARKS	
SO-50		FM	145.85 PL67	436.795	FM Rptr	PL 74.4 to open	
EO-80		FM	435.080 PL210.7	145.84	FM Rptr	· .	
AO-85		FM	435.172 PL67	145.98	FM Rptr		
ilacsat-2		FM	144.35	437.225	FM Rptr		
0-7	145.7	CW	432.120-432.180	145.920-145.980	CW/SSB	INV	
O-29	435.795	cw	145.900-146.00	435.800-435.900	CW/SSB	INV	
AO-73	145.935	BPSK	435.130-435.150	145.950-145.970	CW/SSB	INV	
O-79			435.047-435.077	145.935-145.965	CW/SSB	INV	
Jkube-1			435.060-435.080	145.930-145.950	CW/SSB	INV	
(W-2A			435.030-435.050	145.665-145.685	CW/SSB	INV	
(W-2F			435.330-435.350	145.980-146.00	CW/SSB	INV	
SS			144.49	145.8	FM		
			437.8	145.8	FM Rptr		